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ORBIT CONNECTIONS IN A PARABOLIC EQUATION
by

Jack K. Hale and Arnaldo S. do Nascimento

Abstract

~ For all solutions of a particular scalar parabolic equation in one
" ke
. . Tha A R .
bounded space dimension, we discuss the global dynamics on the maximal

compact invariant set and especially the orbits connecting equilibrium

points.
e
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1. Introduction. In this paper, we study some aspects of the global

dynamics of the scalar parabolic equation

utﬂuxx+>\f(u), 0<x<n
(1.1)

u=20 at x = 0,n

where A >0 and £ 1is a c?-function.
It is shown in [6] that the initial value problem for (1.1) defines

a C,-semigroup T, (t),t > 0, on X = W(])"Z(O,n) with T, ()0 = u(t,: @)

and u(t,x,9) the solution of (1.1) with u(0,x,p) = @(x). Also, for
each ¢, {Tk(t)tp,t > 0} belongs to a compact set and has its W-limit

set in the set E, of equilibrium points
Ey = (veEX:0_ + £@) = 0} (1.2)

Regularity theory for elliptic equatioms implies.that $wEe E)‘ and

wew(l)’z(o,ﬂ) aw?:Peo,m.
Let

A = {‘DEX : T)\(t)‘l’ exists and is bounded for t€ (-»,©)}; that
is, the set of globally defined bounded solutions of (1.1). If E)‘ is a
compact set, then every orbit eventually enters a neighborhood of E,.
Classical results on dissipative processes (see, for example, Hale [3])
imply that A,‘ is a maximal compact invariant set (sometimes called the
attractor) for TA(t), A, 1is uniformly asymptotically stable and, for any

bounded set V in X, the W-1imit set of V belongs to A,.
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This remark implies that the qualitative properties of the flow
defined by (1.1) is completely determined by the behavior of the flow when
restricted to the attractor A . Restricting the discussion of infinite
dimensional dynamical systems to the attractor has been advocated for some
time in connection with functional differential equations and some types of
partial differential equations (see Hale [4] for a discussion and references).

Any attempt to study the flow defined by (1l.1) restricted to Ay is
firstly hampered by the difficulties of understanding the bifurcation diagram
for the equilibrium solutions as a function of A in [0,®), After one

obtains the bifurcation diagram, the next step in analyzing the flow on Ay

is to determine the G-and Ww-limit sets of orbits on Ay ; that is, which
equilibrium points are connected by orbits.

Very few complete descriptions of the flow on AA have been given in
the literature. Much attention has been devoted to bifurcation diagrams and
local stability, but very little discussion has been devoted to the connections
between orbits. The purpose of this paper is to concentrate on these con-
nections for a particular class of f and domains Q. ,

An equilibrium point ¢ 1is hyperbolic if the linear variatiomal

equation for @ does not have zero as an eigenvalue. The unstable manifold

Wu(u» of ¢ has dimension k 1f this variational equation has k positive -

eigenvalues, If all equilibrium points are hyperbolic, then one can show that

INERY) Ex"u(“’)

@€

The problem of determining how the equilibrium points are connected on AA

reduces therefore to a discussion of the w-limit set of w“(ua\{uﬂ.

Without further detailed hypotheses on f, the authors are aware of
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only one general result on the flow on A)\. Suppose TA(t) leaves the
positive cone K in X 4nvariant and one restricts the discussion to K.

If E,NK = {(01,... ,tDr} with each tDj hyperbolic, then one can show that

r is odd, dim W'(®¥,, ,)NK =0, din w"«pzj)rmx =1, §=1,2,... and, on

-1

Ay nK, is connected to

23 ij— for all j (for a proof, see

1’w2j+1

Smoller {9] or Hale [5]).

To obtain more general results, we assume in this paper that f

satisfies
£(0) = 0, £'(0) = 1 (1.3)
sgn f"(u) = -sgn u for u # 0 (1.4)
ITmlsup £(u)/u < 0. (1.5)
U

Our objective is to discuss the global flow on A)‘.

For f satisfying the above (1.3),(l.4),(1.5), Chafee and Infante [1] showed

that there are exactly 2n+1 equilibrium points @ = 0, W;,j = 0,1,..,n-1,

of (1.1) for n2 <A< (n+ 1)2, n=0,1,2,.., each hyperbolic with (p;',wj

t
3

+
The solutions ‘93 bifurcate from 9 =0 at A = jzﬂz. This gives a

complete description of the bifurcation diagram for equilibrium solutions

having 3] zeros in (0,1), dim Wu@ ) =3 for all j, dim w“(ww) = n.

for all A > 0.
The main result of this paper is the following, where Y(¥,V) denotes
an orbit with a-limit set ¥ and W-limit set V.

Theorem 1.1. If f satisfies (1.3),(1.4),(1.5), and n° < A < (n+1)%, then
+
j
For f odd, Henry [6) established the orbit connections in Theorem 1.1

there exist v(@_,® ), j=0,1,...,n-1, y((p:‘i',cpi) if j » k,j, k=0,1,...,n-1.

for 0 < A< 16; that is, the A interval which included the first three
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bifurcations. In an attempt to obtain orbit conmnections for all A >0,
Hale [5) introduced an approach using the concept of lap number of Matano [8].
Our proof of Theorems 1.1 below is based on the concept of lap number and

dimension theory.

2. Lap number. We first introduce the concept of lap number from Matano({8].

A real-valued function u(r) on the interval I = [0,1] is said to be

plecewise monotone if I can be divided into a finite number of nonoverlapping

p -
subintervals 11,12,...,Ip (il=Jle = I) on each of which u is monotone.
Eat 2+(u) = min{p,pEN I = LpJ Ii and u/Ii is monotone increasing}.
i=1

Define £ (u) 1n a similar way using monotone decreasing. The nonnegative
integers !.+(u),2._(u) are called the lap numbers of u. Roughly speaking,
it measures the complexity of wu. For a solution u(x,t) of (1.1) and a

fixed t its lap numbers R.t(u(- ,t)) are well defined and one can state

the following result.

Theorem 2.1 If f(0) =0 and u(-,t) is either a solution of (1.1) on [0,T]

then 2'(u(-,t;)) > 2 (uCe,t)), 27(uCe,8)) > R7(u(-,t,))  for any

0<t, <t, <T.

1 2

Proof of Theorem 1l.1. We first derive some elementary consequences of lap

number which have widespread interest. Let A, be either the maximal compact
invariant set for Eq. (1.1) Let M1€A>‘, i=1,2,...,p, be compact invariant

sets in A)‘ Following Conley (2], we say {Mi} is a Morse decomposition

P
of A 1f w€A ~U M, implies there are integers j > k such that the
i=]
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W-limit set of ¢ is in M.k and the O-limit set of @ is in Mj.

Following Hale [7], for An <A< )‘n let

+1°
Ai = {Q€ 4, : {1\ (), tER as well as its O- and W-limit sets
have exactly j zeros in (0,M}.
Each set Ai is compact and invariant. If we define A;: = {ww=o},
then the following result was proved in [5]. We give the proof here for
completeness.

] =
n+1’ the sets A, j = 0,1,...,n form a

| N

Morse decomposition of Ay. Also, A;\ = {(D;,‘DJT} for all j = 0,1,..,n-1.

Proof. Let us first prove that ¢_ is unstable in A, if A << }‘n+1

n
for any n. Any function in the stable manifold ws(am) of @ except
zero has at least n zeros in EO,l). We recall that A)\ is the union of
the unstable manifolds of the equilibrium points. Near any equilibrium point,

elements on the unstable manifolds must have no more than n zeros. Thus,

Theorem 2.1 implies ¥_ 1is unstable.

n
Now suppose that Q€A ~ U0 AE and G(Y) = WEA{ » W(¥) = ne A;f.
p:
Since as t +-w, T)\(t)(o +> lPGA;‘, an equilibrium point with j zeros in

(0,T) and since the zeros of ¥ are simple, it follows that 'r)\(t)co has
j zeros in (0,7 for t < - T with T sufficiently large. Also, T)‘(t)w

has j + 1 extreme values in (0,T). Also, Tk(t)w + ne€ Al{ as t -+~ ®, with
k simple zeros and k + 1 extreme values in (0,7). Thus, if @ = T)‘(-T)‘p,
then Tx(t)a + n and Theorem 2.1 implies that the number of extreme values of

® must be > the number of extreme values of nN. This implies J > k. If
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of propagation in a homogeneous medium, =0, may be considered

as a particular case. However, for 2>1 the similarity solution

explodes and thus it cannot be used to represent in any sense

the general Cauchy problem. vThis in turn signals that whenever
£>1, or, as we shall find, more generally--whenever the condi-
tion (2) holds, thermal diffusion will be different. The
analysis of this case is carried out in the present work.

Simply stated, the main result ensures the isothermaliza-
tion of the medium to a positive average temperature.

Such a result would be natural in a finite domain wi-

homogeneous Neumann condition. Here it is derived for a ¢ rchy

problem. It is of course drastically different from diff

in a homogeneous medium or any infinite inhomogeneous mass

‘medium, where the average temperature is zero. In a standard

diffusion problem the first non-vanishing term describes the
decay to "average" zero of the thermal pulse. On the other
hand, in our case the calculation of how this average is ap-
proached constitutes the second term in an appropriate asymp-
totic expansion. We plan to report onthis in the near future.
One should, however, distinguish between the approach to
the average temperature u at a given point and the behavior at
infinity. Whether the isothermalization of the whole space
takes a finite or infinite time still remains éo be answered.
Note that the possibility that arbitrarily far particles have

a finite temperature is physically plausible. Because there

Crgwe
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asymptotically stable in Bli’j,tpi are unstable in B;f’J for j = 0,1,...,n-1,

k = 0,1,...,n. Furthermore, Ws(lpi) nwl@) is open_in B}f’j for any

equilibrium point V€ Bl)f’j .

Proof: If d > 1, p > d, the Sobolev embedding theorem implies Wi’p(B)
is continuously embedded in C(B). If d = 1,p = 2, the same is true. Thus,

there is an € > 0 such that Itp—(p.;| 1.p €,|w-w;| < €, implies ¢
%o
]
has exactly j zeros in (0,1) and ¢ has exactly 3 + 1 zeros in (0,1).

Theorem 2.1 implies the derivative of w(yY) must have no more than j + 1

zeros in (0,1). Thus, W(p) has no more than j zeros in (0,1). Since

w(Y) GBI;’j , 1t follows that w(tp)€Ai. Thus, the set i is a maximal

k,j

compact invariant set in B)‘ and is an attractor for the set I of points

in B;f’j with j =zeros in (0,1). Since this set T 1is positively invari-
ant under Tk(t), it follows that Ai is uniformly asymptotically stable

(the detailed proof is similar to ones in [3] for cissipative systems). Since

3o gt
A = Loy

clear that w:,w; are unstable in Bi’k. This proves the first part of the

+
} the assertions about tpg are true. From Theorem 3.1, it is

lemma.
N +
To prove the last part of the lemma, suppose ws(¢3)n WU(W) is not

empty and contains an element ¢€B:’j, wCAj. Then W(V) €Aj. Suppose

€ >0 1is arbitrary. Since Ai is uniformly asymptotically stable, there

isa 6 >0 such that, if ¢ 1is in the & neighborhood of Ai, then,

T)‘(t)w is in the €-neighborhood of Ai and w(tp)EA;‘. There is a
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ty = x0(¢,€) such that Tx(to)'ll is in the &-neighborhood of Ai. Continuity
with respect to initial data implies a neighborhood U of ¥ such that
T}\(to)U is in the ¢-neighborhood of Ai. This completes the proof of the

lemma.

+ + o+
Lemma 3.3. If )€ (An,knﬂ), n>1, then Y(o,,¥)), \r(wj »P,) exist for

0<j<n-l.

Proof: The manifold Wu((p+) is tangent at ‘p+ to the linear subspace

] 3
of X spanned by the eigenfunctions (pj K of the operator 82/3x2+>\f'(<p;)
]
corresponding to the eigenvalue Aj Kk’ k = 0,1,...,j-1. Furthermore,
b}

tpj x has k-1 =zeros in (0,1). Thus, there is a \PEWu(w;) such that
*

Tx(t)‘P > w.; for t <-T 4f T >0 4is large enough. An application of

the maximum principle yields TA(t)lP > cp; for all t €R. Since TA(t)W

converges to an equilibrium solution as t + «, it follows that

T, (¥ » '0; as t + o, gince to; is the only equilibrium solution > w.;'.
The same type of argument applies to ¢, and ¢, to complete the proof

3

of the lemma,

Lemma 3.4 I1f n2 <A< (n+1)2, n>1l, and @,y are equilibrium solutions

of (1.1) having respectively j+k and k simple zeros in (0,1), then

V- has exactly k simple zeros in (0,1).

Proof: It is clear from the equilibrium bifurcation problems (see [1] that
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0<M = max {Q(X)} <M, = max {y(x)} and m = min {Q(x)} <
Py e10,1] I xefo,1] I xeto0,1]
m, = min {¥(x)} < 0. Moreover, wnenever ¢ (x) = 0, for some x€ (0,1),
X€ {0,1] x

either cp(?) = M or tp(;) = m with obvious modifications for the other

j+k

cases. Also 0 < @(0) < ¥(0).

From the above results, by plotting ¢ and ¢ respectively it
becomes clear that their graphs intersect at least at j points.

Next suppose there are x < xz
>0 on (xl’x2)° We prove that the graphs of y and ¢ cannot

such that w(xl) = Mj W(xz) =0,

intersect twice on [xl,x2]. For this purpose, suppose there are ¥1+Y,
such that X, <y, <y, <X, and ¥(y;) = @&(y)), ¥(y,)) = &(x,),
v(x) < @o(x), ¥y < x <y,

Let & = ¥W/Yy on [yl,yZ]. Then & satisfies

@ _ (D¢ .
B * 0/ E+ Dt Ea0, y <x<y,

Ex(yp) >0, 6. (y) <0 , E(y) =8(y) =1.

By virtue of (1.3), (1.4) and the fact that 0 < ¢ < @ on (yl,yz), the
coefficient of & in the above equation is negative. A maximum principle
ylelds § = 1, which is a contradiction. The cases Yo = xp = 1 or

xl i 2 0 and other similar situations can be ruled out using the same
technique, thus ensuring that the graphs of ¢ and ¢ 1intersect at exactly

3 points. This proves the lemma.

- — A
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4. Proof of Theorem 1.1. In this section, we complete the proof of Theorem 1.1.

To do so, we need some concepts from dimension theory.
A subset D of a topological space z is said to separate z if

Z\D is disconnected. The proof the following lemma may be found in {7].

Lemma 4.1. Any n-dimensional manifold cannot be separated by a subset of

dimension less than or equal to n-2.

The following result is the first step in the proof of Theorem 1l.1.

Lemma 4.2. For )‘n <A< An+1’ n > 1, there exist orbits

Y(ww:w;)’ Y(‘Dw,w;). j = 0,1,--,1‘\-1.

Proof: For this proof, let z = W](')’p(ﬂ). Fxistence of the orbits Y(‘Om,‘pé)

has been proved in Lemma 3.3. From the definition of Bi’k , Wwe have

B - A
+1 + -
B3t - B - ey ve)))
and w-; ,w; are uniformly asymptotically stable in B;\l’j from Lemma 3.2.
Furthermore Lemma 3.2 implies the sets 0‘3 . = Ws(tpi) n Wu(tpm) are disjoint
>t

open sets in B;l’j n w“(tpw).

Since w“(ww)g B;‘l’o , the sets ﬁm0+ are disjoint open sets in the
s

connected n~-dimensional manifold w“(q:m). It follows that Wg(tpm) def

B;"lnw“(wm) separates w“(cp“) and Lemma 4.1 implies that

u
n > dim Wi(@,) > n- 1.

We need a local representation of Wu(tp“). From stable and unstable

manifold theory, if (D“,j
’

» J=»0,1,,...,n~1 are eigenfunctions corresponding
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to the eigenvalues 0 < >‘1 <A < ,.. <X and

2 n

n-1 n
O = By Oy g 0 @ = (B0, n0 ) ER

I={(VeX : ¥ = p@), ¢ER"}

then there is a Lipschitz continuous function h : § - w“(wm), |h(¢p)|__=
X

o{lo|_) as |p|_ > 0 and an € > 0 such that the set
X X

V@) = ¥ : ¥ = 9@ + h(o@)), || < €}
is a neighborhood of ¢ in Wu(ww) where & = max|a1| .

Now suppose that no point in w;(tpm) NVv(p,) has w-limit set in

1 4 -
A= {(01.‘01}. Choose &, = ... =G . =0 and choose real numbers

€ >0, € >0 so0 small that, for every 0 < [ay| < &), 0 < [a ] < €

the function n(a) = cpo(G) + h(tpo(a)), wo(ot) = Olocpm,o + Otlwm 1 has no

more than one zero in (0,1). This can be done since h(yp) = o(lwl_) as
X

lol_ = o.

14

Let U be the set {n(®), 0 < |a,| < €, 0 < |a]| <€} Since no

point in W;((ow) N 9 (¢,) has W-1imit set in A}‘l, Theorem 2.1 implies that

wy) < Ag for llI€U\{<pm}. Thus, in a neighborhood of ww,wu(cpw) is not

separated by wg(wm) since wg(ww) is determined by only the n-2 numbers

& & This 18 a contradiction and shows that there is an element in

greees®aye

1 1 + -
Wp(0) N9/(9,) with G-limit set in A,. Since A, = {9/ ,0]} , this implies
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+ - +
either Y(w,,,tol) or Y(ww,!pl) exists. Suppose Y((Dm,wl) exists. Then
there is a solution u(t,x) of the equation with wu(t,x) -+ wm(x) as t >~

+ - +
u(t,x) - tpl(x) as t > -, But then u(t,T-x) - (pl(x) = tpl("-x) as t > o
and Y(“’m’w;) exists. The same argument applies if one assumes Y(wm,cpz)

exists.,
From Lemma 3.2, w‘{,wz are uniformly asymptotically stable in

n,l

B,

n-1 < dim Wg(wm) <n, it follows that =n-1< dimﬁt’t <n. Lemma 3.2

and ﬁi , are disjoint open sets in Wg(tpm) = B;\"l n Wu(wm). Since
»*

implies 9, is unstable in Wg(wm). Choose the connected component

C:’l of B;\"l that contains both lp; and cp;, define ﬁ;’z = B;\"Z n C;‘l’l,
W'il((pm) = i';\"znw“(cpm). Then W‘l"((.pw) separates wg(ww) and

n-2 < dim W;((pm) < n-1. Exactly as before, one shows that there
2
is an orbit in w;(ww) connecting @  to A)‘. Then one argues as above
+ +
to see that Y(“’w“’z) s Y(‘poo""l) exist.

This process is repeated to obtain a proof of Lemma 4.2.

+
+

To complete the proof of Theorem 1.1, we must show Y(¢,,p,) exists

Cae
=

if j > k. To prove this, fix j and consider the compact invariant set

Bi’o . We know from Lemma 3.2 that

o +

,0  are uniformly asymptotically
0

j ere unstable with dim w“(wj) - 3. If

us ‘D; + v, then v =0 has unstable manifold of dimension j and Lemma 3.4

stable in Bi’o and (p;',w

+
implies that the equilibrium points ¢ = wl—c - tp; for 0 <k <} have
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k zeros in (0,1). One can now repeat the same type of argument as above
to obtain the desired connections taking first Ws(wg -w';) away from

0,3 8, + 4+
BA , then W (wl-wj), etc.
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